
Abstract In the present research work the interphase

layer model is developed as a continuum media with

local cohesion and adhesion effects. By the model it

was found that these effects can help to understand/

predict macro/micro mechanics of the material, if the

boundary conditions and phase effects are modeled

across the length scales. This paper describes the

kinematics of continuum media, the formulation of

governing equations (fundamentals) and the statement

of boundary conditions for multi-scale modeling of the

material. An approach and the model has been vali-

dated to predict some basic mechanical properties of a

polymeric matrix reinforced with nanoscale particles/

fibres/tubes (including carbon nanotubes) as a function

of size and also dispersion of nanoparticles. Presented

mathematical model of an interphase layer allows

estimating an interaction around and nearby interfaces

of nanoparticle and material matrix. Using these

approaches the prediction methodology and modeling

tools have been developed by numerical simulations

and analysis of the mechanical properties across the

length scales. Results of the work will provide a plat-

form for the development and understanding of

nanoparticle-reinforced materials that are light-weight,

vibration and shock resistant.

Introduction

Special properties of hyperfine structures (micro and

nano-particles, nano-tubes) as well as mechanical

properties of new materials manufactured on the basis

of such structures are of great theoretical and practical

interest. Non-classical mechanical phenomena and

behavior of nanoparticle-reinforced composite mate-

rials are unknown in full measure by now and require

further investigations. For a nanocomposite to be

designed into a structure, some kind of optimisation/

modelling is usually required to estimate its perfor-

mance in normal operation conditions. The availability

of suitable models can greatly help in this process. In

the paper [31] the variant of the nanoscale continuum

theory was elaborated on the bases of the notion of

interatomic potentials of materials in the framework of

the continuum mechanics. This continuum theory

allowed to describe internal interactions on the level of

nanometers and was used for the developing of con-

stitutive models for SNWT-reinforced polymer com-

posites. Similar variants of the nanoscale continuum

theories [30, 41] were elaborated on the basis of the

equivalent-continuum modeling technique and in view

of discrete nature of atomic interactions.

The study of consistent multiscale continuum model

is important from both fundamental and applied

viewpoints. The developed model higher-order con-

tinuum theory can be used to fill up the gap between

approaches for the gradient elasticity [1, 2, 15] and

gradient plasticity [12, 13, 14]. Applications of the

model may include the modeling of ultra dispersed

composite materials, foamy solids, dynamics of inter-

faces and surface effects, crackling, cavitation and

turbulence etc.
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Advanced model of continuum mediums with kept

dislocations [20] may consider stress-strain fields across

the length scales and the corresponding superficial

phenomena [16, 17, 19, 21]. In these researches general

mathematical statement of corresponding boundary-

condition problem was determined by Lagrange’s

functional and corresponding Euler’s equations based

on the boundary conditions. An important aspect of

the model is investigation of multi-scale cohesion and

adhesion effects at the interfaces of nanoparticle-rein-

forced materials that are important for stress-strain

relation between material phases. The model has

been successfully applied to prediction/modeling of

mechanical properties (Young modulus) of nanoparti-

cle-reinforced polymeric composites as a function of

nanoparticle’s diameter and dispersion taking into

account cohesion type interactions [16, 17] and both

cohesion and adhesion superficial interactions. [19, 21]

One of the main goal of mechanics of composite

materials is the definition of the effective mechanical

properties using the homogenisation technique. The

problem of calculating the effective characteristics of a

composite consisting of a homogeneous matrix and

small amount of ellipsoidal inclusions of different

elastic modulus is, in principle, solved in framework of

the classical theory of elasticity [24, 25, 30, 36]. The

publications devoted to the study of effective charac-

teristics of composites for the finite quantity of the

concentration may be conventionally subdivided into

the following groups: the method of averaged strain

field (Mori-Tanaka method) of the matrix [24, 40], the

self-consistent method of effective matrix [7, 25], the

method based on the analysis of periodic structures [6,

26, 28, 33], and the method based on the hypothesis of

three phases [32].

Note, that effect of reinforcement by nanoparticles,

however, was not finally investigated and requires

further computational tools. It was found, for example,

that CNT reinforcement of polymer matrix at 0.5%

volume rate may increase a modulus of elasticity by

40–60% [34, 35]. Model given by [35] cannot predict

effective modulus of elasticity and explain the effect of

substantial growth of mechanical properties of the

material [34]. Therefore, some advanced model is

required.

In the present paper to model of an interphase layer

an advanced continuum model with field of kept dis-

location is applied in mechanics of materials. This

model considers the cohesion and adhesion local

effects between nanoparticle and matrix as the length

scale effects. It is worth noting that the local interface

effects are particularly important at high defect

concentrations in the material and large size of surface-

to-volume ratio that increase area of contact between

nanoparticle and matrix. Using these approaches the

prediction methodology and modeling tools have been

developed by numerical simulations and analysis of the

mechanical properties across the length scales. So, the

generalized Eshelby solution is given and asymptotical

averaging technique of homogenization is extended on

the higher-order continuum theory of the mediums,

which allow to take into account the specific properties

of the interphase layer at modelling of the composites

with micro- and nano-inclusions. An important aspect

of the model is investigation of multi-scale effects at

the interfaces of nanoparticle-reinforced materials that

are important for stress-strain relation between mate-

rial phases. An advantage of proposed approach is

computationally effective methodology based on a

fundamental theory of continuum mechanics.

Multiscale model of continuous media

According to the kinematics variation principle [5, 17,

18, 29], a functional of material’s energy can be found

and then a set of force interactions at the introduced

kinematics relations is determined. Thus, the model is

totally determined by the number of kinematics rela-

tions and therefore, it may consider some linear

reversible stress-strain processes. We will define a

defectless Papkovich medium as a medium with a

continuous vector potential of the distortion tensor of

deformation dij
0:

d0
ij ¼

@R0
i

@xj
; ð1:1Þ

the displacement vector Ri
0 is continuous and the dis-

tortion tensor din
0 is a general solution of the homoge-

neous equation:

ðc0
in þ

1

3
h0din � x0

k �

C

inkÞm �

C

nmj ¼ 0 ð1:2Þ

where the equation c0
in þ 1

3 h0din determines a symmet-

rical part of the tensor dij
0, and the equation x0

k �

C

ink

determines its non-symmetric part; dij is the Kronecker

delta; xk
0 is the vector of curls and it can be found as

x0
k ¼ � 1

2

@R0
i

@xj
�Cijk, �C

ijk is the permutation symbol, cin
0 is

a deviator tensor or deviatory strain; 1
3 h0din is a

spherical tensor; and h0 is amplitude of the spherical

tensor.

It is worth noting that the Eq. (1.1) states the kine-

matics relations between twelve degrees of freedom cij,
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h, xk and Ri of the model. In general case for base

model we will consider the mediums with kept dislo-

cation [20, 22]. In the case of defect-containing con-

tinuous medium it is characterized by the non-

homogeneous Papkovich equations as follows

ðcin þ
1

3
hdin � xk �

C

inkÞ;m �

C

nmj ¼ Nij ð1:3Þ

where ðdinÞ;m¼ ðcin þ 1
3 hdin � xk �

C

inkÞ;m is the general

tensor of curvatures of the model.

Continuous tensor of ‘‘inconsistencies’’ of displace-

ments Xij given in Eqs. (1.3) can be used as a tensor of

dislocations density, see [9]. In the defectless homo-

geneous Papkovich medium the distortion tensor dij
0 is

integrable since it can be determined from the Eq.

d0
ij ¼

@R0
i

@xj
by means of integration over the displacement

vector, and the integrability conditions (1.2) are ful-

filled. On the contrary to that, for the Papkovich–

Cosserat medium with defects, the distortion tensor of

deformation dij can be represented in the general case

as a sum of two parts: the integrable part (dij
0), and the

non-integrable part (dij
X). In the case of non-defect

homogeneous Papkovich medium a distortion tensor is

expressed by mathematical product of integration from

the Eq. (1.3). The solution of the above Papkovich Eq.

(1.3) with respect to cij, xk and h can be expressed as

the product of the following general solution of the

homogeneous Eq. (1.2) for d0
ijðd0

ij ¼
c0

ij þ 1
3 h0dij � x0

k �

C

ijkÞ, and the partial solution of the

non-homogeneous Papkovich Eq. (1.3) to be given in

the form as dij
X: dij

X = dij
0 + dij

X, (dN
ij ¼

cN
ij þ 1

3 hNdij � xN
k �

C

ijkÞ. Partial solutions of non-homo-

geneous Papkovich equation with respect to the dis-

tortion tensor dij
X or with respect to factors of cij

X, xk
X

and hX (that is the same way) can be considered as

degrees of freedom that are independent displace-

ments. The distortion tensor expressed by dN
ij �

cN
ij þ 1

3 hNdij � xN
k �

C

ijk can be considered as ‘‘generalized

displacements’’ (‘‘plastic distortion’’ [9]). Since the

‘‘inconsistencies’’ tensor Xij can be incorporated into

the ‘‘generalized displacements’’ by the following

relations:

ðcN
in ¼

1

3
hNdin � xN

k �

C

inkÞ;m �

C

nmj ¼ Nij ð1:4Þ

it can be referred as a tensor of ‘‘generalized strains’’

for these ‘‘generalized displacements’’.

Using the Cosserat terminology, it can be written

that x0
k ¼ � 1

2

@R0
i

@xj
�C

ijk is the restricted curvature, and

xk
X is a free curvature or spin. By the same way, it

can be found that cij
0 and h0 is restricted strains, cij

X

and hX is free strains. The following differential

conservation law is valid for tensor Nij :
@Nij

@xj
¼ 0. In

other words, the flux of tensor Xij through the arbi-

trary surface stretched over the chosen planar con-

tour is the invariant. Therefore, it can be chosen as a

measure of dislocations. It is important to note that

one of major features of the Papkovich–Cosserat

continuous media is that it is not possible to describe

the birth or disappearance of dislocations in the

framework of these media models becauseRR
�� NijnjdF ¼ 0. Therefore, the defects associated with

the conserved dislocation tensor Xij cannot be born

or disappear.

In the works [16, 18, 29] the kinematical variational

method of modeling is formulated. In concordance

with it the kinematical connections of the medium are

defined, the virtual work of internal forces is postulated

as a virtual action of reaction force factors on the

kinematical connections (1.1), (1.4) peculiar to the

medium. This action is presented as a linear form of

variations of its arguments and can be integrated for

the conservative mediums. As a result the strain energy

is determinated. For the linear mediums the potential

energy is being the quadratic form of one’s arguments.

For the mediums with kept dislocations such kine-

matical connections are the Papkovich’s inhomoge-

neous equations in use to free distortion, and

Papkovich’s homogeneous equations for the con-

strained distortion. The last ones can be integrated in

the general form. The Cauchy’s asymmetrical correla-

tions are the solution of the Papkovich’s homogeneous

equations for the constrained distortion. Thus,

according to the kinematical variational principle the

virtual action of the internal forces one should present

in the following form:

dU¼
Z Z Z

rijd d0
ij�

@Ri

@xj

� �

þmijd Nij�
@dN

in

@xm
�C

nmj

� �� �

dV:

ð1:5Þ

Here dU is the virtual work of the internal connec-

tions which is the linear form of its argument’s varia-

tions; rij and mij are a tensors of a Lagrange

multipliers, which in physical meaning are the reaction

force factors, providing a fulfillment of the respective

kinematical connections.

Let’s present dU in (1.5) as the linear form of one’s

argument’s variations. Using the integration by parts

we’ll get the following expression in the items,

including the derivatives:
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dU ¼
ZZZ

G

rijdd0
ij þ

@rij

@xj
dRi þmijdNij

�

þ @mij

@xm
�C

nmjddN
in

�

dV

þ
ZZ
��
@G

�rijnjdRi �mijnm �

C

nmjddN
in

� �
dV 0

ð1:6Þ

For mediums without the dissipation of energy the

potential U exists, that the virtual action dU in (1.6) is

the variation of this potential:

U ¼
ZZZ

G

UGdV þ
ZZ
��
@G

ZZ
�� U@GdV 0;

UG ¼UGðd0
ij; dN

ij ; NijÞ; U@G ¼ U@GðdN
ij Þ ð1:7Þ

Note, that we consider the generalized medium

model with scale effects, which is not conflicted with

classical theory and known experimental data’s.

Because the displacement vector was excluded from

the list of arguments for the density of potential energy

in the volume UG and on the surface U¶G. Stating

some physical linearity of the model, the density of

potential energy U of the model (1.7) can be found in a

belinear quadratic form of its own arguments of the

different tensor’s dimensions. The constants in the

belinear quadratic form are, therefore, physical con-

stants of the model and thus establish a generalized

equation of the Hook’s law (constitutive relations)

for a Papkovich–Cosserat’s continuum model in the

following form:

rij¼
@UG

@d0
ij

; mij¼
@UG

@Nij
; pij¼

@UG

@dN
ij

;Mij¼
@U@G

@dN
ij

¼AijnmdN
nm

ð1:8Þ

here rij are stresses, mij are moment stresses in the

valume, pij are dislocation stresses, Mij are moment

stresses on the surface.

One should interpret the formulas (1.8) as a gen-

eralized Green’s formulas for the volume and surface

force factors. These equations make possible to write

the Lagrangian and find the Euler’s equations.:

dL¼
Z Z Z

G

@rij

@xj
þXi

� �

dR0
i �

@mN
in

@xm
�C

nmjþpij

� �

ddN
ij

� �

dV

þ
ZZ
��
@G

ZZ
��
h
ðYi�rijnjÞdR0

i �ðMinþmijnm�

C

nmjÞ

�ddN
ikðdkn�nknnÞ

i
dV 0¼0 ð1:9Þ

We used here the following equations npnq �

C

pqj ¼ 0,

which is result of convolution of the symmetrical tensor

np nq with the antisymmetric pseudotensor �Cpqj. In

result, the list of arguments is determined by six ‘‘plain’’

components of the free distortion tensor dim
X (dpm ) np

nm): U¶G =U¶G (dik
X (dkj ) nknj)) and Eq. (1.9) gives the

correct variational formulation of the boundary problem

for the mediums with kept dislocations. Note, that for the

investigated medium model in every ordinary point of the

surface we have nine boundary conditions. The analysis

of the governing equations and the boundary problem as

whole makes possible to prove that general order of the

equations in respect to components of the displacement

vector and the potentials for the components of the free

distortion is equal to eighteen. So, the mathematical

formulation of the investigated model is consistent,

because nine boundary conditions for the boundary

problem of eighteenth order there are (please compare

with [23]. Generally for each of parts of the free distortion

tensor dij
X: hX,xk

X and cin
X accordingly the their own specific

scale effects are have place. These scale effects define the

specific length of internal interactions. Let’s make the

common remark concerning structure of the solution of

the problem (1.9). It can be proved that the governing

equations of the boundary problem respect to the dis-

placement vector Ri in general case can be written in the

form of the product of two operators: Lij and Hij, Lij(Hij

(Ri)), where Lij (...) is the classical Lame operator

Lijð. . .Þ ¼ lDð. . .Þdij þ ðlþ kÞ @
2ð...Þ
@xi@xj

, (l, k are the Lame

coefficients) and Mij (...) is more common operator, which

can be considered as generalized operator of Helmgoltz

type [20]. Operator Hij(...) defines the local effects for

proposed particular variant of the gradient theory.

Formulation of the interphase layer model

Within the framework of the multiscale model, a theo-

retical model of an interphase layer is obtained as par-

ticular simplified case of the general model of the

medium with kept dislocations (1.9). To construct the

most simple gradient theory we assume that cin
X = 0, and

xk
X = a1 xk, hX = b1 h, where h and xk are corresponding

constrained deformations, a1 and b1 are constants. Other

words we assume that the lengths of the scale related

with hX and xk
X are proportional. These assumptions lead

to correct mathematical formulation for the mediums

with specific local cohesion and adhesive interactions as

particular model of the general Papkovich–Cosserat’s

medium model with kept dislocations (1.9). After all

the mathematical statement of the simplified variant

of the interphase layer model is completely determined

by the following equation for Lagrange functional and

variation equation:
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dL¼d½A�ðUGþU@GÞ�;

L¼A�1

2

Z Z Z

G

"

2lcijcijþ
2l
3
þk

� �

h2þ8
l2

C
nijnij:

þð2lþkÞ2

C
hihi

#

dV�1

2

Z Z

@G

ZZ
��½Dij

_Ri
_Rj�dV 0 ð2:1Þ

where G is the volume of investigated body, ¶G is the

boundary surface of the elastic body, A is the

work of external forces on the displacement vec-

tor Ri; nij ¼ 1
2
@xi

@xj
þ 1

2
@xj

@xi
¼ � 1

4
@2Rn

@xj@xm
�C

nmi � 1
4
@2Rn

@xi@xm
�C

nmj

hi ¼ @h
@xi
¼ @Rj

@xj@xi
; _Ri ¼ @Ri

@xj
nj; Dij = A ninj + B(dij )ni nj);

l,k are the Lame coefficients; C is the physical constant

that determine the cohesion interactions [17]; the coef-

ficient B is responsible for the surface effects at each

point of the surface within the tangential plane; the

coefficient A is responsible for the interaction normal to

the surface; Dij
_Ri

_Rj ¼ A ninj
_Ri

_Rj þ Bðdij � ninjÞ _Ri
_Rj is

the surface energy density associated with changes of

defect number due to deformation.

Stress state of the proposed model is define by the

following equations for the stresses rij and for the

moments mij, (2.1):

rij ¼
@UG

@ð@R0
i =@xjÞ

¼ 2lcij þ
2l
3
þ k

� �

hdij;

mij ¼
@UG

@Nij
¼ 8

l2

C
nij þ

ð2lþ kÞ2

C
hk �

C

ijk: ð2:2Þ

On any surface with a normal vector ni, vector of

forces can be determined using Eq. (2.2) as follows:

Pi¼
(

2lcijþ
2l
3
þk

� �

hdijþl2
0

"

2lDxn�

C

ijn

�ð2lþkÞ2

l
Dhdij

#)

njþl2
0 dqj�nqnj

� � @
@xq

� �2l
@xk

@xp
þ@xp

@xk

� �

np�

C

ijkþ
ð2lþkÞ2

l
@h
@xk

nkdij

" #

ð2:3Þ

and on the surface with a normal vector ni, moment of

vector is written in the following form:

Mi ¼ l2
0

"

� 2lðnmnj �

C

ijn þ nnnj �

C

ijmÞ
@xn

@xm
:

þð2lþ kÞ2

l
@h
@xk

nkni

#

ð2:4Þ

here D is the Laplace operator.

Based on the vector Pi, effective normal stresses in a

direction of a normal vector np and effective shear

stresses in the tangent plane are established. Obviously

that nj(dij )ninj) = 0. Then the normal vector is

expressed as: ~rii ¼ Tini; and two components of tangent

components of stresses are equal to: Pi (dij ) ni nj). Note

that the stress state for proposed model of the interphase

layer is described by the symmetrical stress tensor.

The assumptions introduced above (cin
X = 0, and

xk
X = a1xk, hX = b1 h, a1 and b1 are constants) allow to

formulate the boundary problem for the mediums with

specific local cohesion and adhesive interactions. Using

Eq. (2.1) we can write:

ZZZ

G

Lij �
l2
0

l
Lijð. . .Þ þ dijð. . .Þ

� �

RiþFi

� �

dRi

	 


dV

þ
ZZ

@G

ðMi�Dij
_RjÞd

@Ri

@xq
nqdF þ ðTi�PiÞdRi

� �

dV 0 ¼ 0;

ð2:5Þ

where l2
0 ¼

l
C, Lij (...) is the operator of the classical

theory of elasticity, � 1
C Lijð. . .Þ þ djkð. . .Þ is operator

defining the local cohesion type effects for proposed

gradient theory; dV¢is the boundary surface element, nk

is the normal vector of the boundary surface; Fi is the

vector of density of the external loads over the material

volume, Ti is the vector of density of the surface load;

generalized forces Mi and Pi are defined on the surface

¶G by the Eqs. (2.3), (2.4).

Both of coefficients A, B in Eqs. (2.3), (2.4) corre-

spond to the interactions of adhesion type. Surface

effects describe the local effects that are concentrated

near the material domain boundaries. To understand

the physical sense let’s define displacement of cohesion

field. Let’s name a vector of the cohesion displacement

the following vector: ui ¼ � 1
C LijðRjÞ ¼ � 1

C ½ð2lþ kÞ
@2Rj

@xi@xj
þ lðdijDRj � @2Rj

@xi@xj
Þ�. Using general statement (1.9)

we can receive the equations for a vector function

ui:)CHij(uj) + Fi = 0, where Hijð. . .Þ ¼ � 1
C Lijð. . .Þ

þdjkð. . .Þ. Similarly we shall enter definition of a vector

of classical displacements Ui. It is possible to change a

sequence of action of operators. Then we shall receive

the following definition of a vector Ui : Ui ¼ HijðRjÞ ¼
½� 1

C Lijð. . .Þ þ ð. . .Þdij�Rj. Obviously, the vector Ui is

satisfies to the classical equations of balance: Lij

(Uj) + Fi = 0. Taking into account definitions for Ui

and for ui it is possible to present the general solution

of the governing equations Lij(Hij (Ri)) + Fi = 0 as the

following decomposition: Ri = Ui ) ui. Thus, the

boundary value problem (2.4) represents the couple
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boundary value problem for the classical solution and

the solution for cohesion fields model. Boundary con-

ditions in both cases are cross-linked and support each

other. Thus, the boundary value problem represents a

coupled boundary value problem for the classical

solution Ui and a solution for cohesion field model ui.

However, the boundary value problem generally is not

divided. It is worth noting that cohesion interactions

are expressed by new physical parameter of model C.

In recent researches [17] it was shown that this

parameter is fracture factor and may be responsible for

cohesion interactions. Estimation of numerical value of

C parameter can be pursued by an analytic solution of

an open crack at loading in normal direction. On the

other hand, as it was shown in [16, 21], the parameters

associated with cohesion and adhesion scale effects can

be found as a result of solution of the identification

problem using experimental data on effective

mechanical properties of materials.

Contact boundary problem

Let’s consider the contact problem of two phases

(matrix and inclusion) and analyze the boundary value

problem (2.5). Assume that on the surface considered

bodies the following relations have place Dij = 0. In

other words superficial effects of adhesion are

neglected. Note that introduced assumption is not of

fundamental importance but allow to simplify analysis

and procedure of the solution construction. The Euler

equation in variation Eq. (2.5) gives the following

governing differential equation of fourth order for

gradient continuum model of cohesion field:

� 1

C
LLCð~RÞþ~F ¼ 0; Lð~RÞ ¼ lr2~RþðlþkÞrdiv~R;

LCð~RÞ ¼ Lð~RÞ�C~R; ð3:1Þ

where Lð~RÞ�LijðRiÞ¼lr2ðRiÞdijþðlþkÞ@
2ðRiÞ
@xi@xj

is the

differential operator of the linear theory of elasticity,

i.e. operator of Lame equation. We can write also four

contact conditions on the border of inclusion-matrix

for conjugation of the general field of displacements ~R

and general forces fields:

~R
h i
¼ @~R

@n

" #

¼ ~MðnÞð~RÞ
h i

¼ ~Pð~RÞ
h i

¼ 0; ð3:2Þ

here ~R
h i
¼ ~Rf � ~Rm is the jump of the ~R on the surface

of inclusion and so one.

First two conditions (3.2) determine the continuity

of the displacement field ~R together with the first

derivatives near the border of inclusion-matrix, last

two conditions are natural boundary conditions for

variational Eq. (2.5), which are the continuity condi-

tions for moments ~MðnÞð~RÞ and surface forces ~Pð~RÞ.
From structure of the differential operator (3.1) fol-

lows, that the general field of displacements consists

from two fields of displacement: ~U and ~u, ~R ¼ ~U �~u.

One displacement field ~U is the classical field of dis-

placements and satisfies the classical Lame equation of

the theory of elasticity: Lð~UÞ þ ~F ¼ 0. Another field of

displacements ~u is the cohesion field and satisfies the

equation LCð~RÞ þ ~F ¼ 0, where LCð~RÞ � �CHijðRjÞ
¼ LijðRjÞ � CdijðRjÞ. These parts of the fields of dis-

placements can be allocated from the general field of

displacements with the help of Lame operator:

~U ¼ ~R� 1

C
Lð~RÞ ¼ � 1

C
LCð~RÞ; ~u ¼ � 1

C
Lð~RÞ: ð3:3Þ

Thus, the problem (3.1), (3.2) for the equation of the

fourth order is equivalent to a problem of the coupled

analysis for two equations of the second order deter-

mining the classical field of displacements ~U and dis-

placements of the cohesion field ~u, conjugated among

themselves trough four conditions (3.2) on the bound-

ary of inclusion\matrix. Cohesion moments working in

three orthogonal directions, one of which is the external

normal ~n, and others two are any two tangential

directions~s and~s, are defined by the following way:

~MðnÞð~RÞ ¼ Mijð~RÞnj

n o
; ~MðsÞð~RÞ ¼ Mijð~RÞsj

n o
;

~MðsÞð~RÞ ¼ Mijð~RÞsj

n o
; ð3:4Þ

here tensor Mijð~RÞ defines by Eqs (2.4): Mijð~RÞ
¼ ð2lþkÞ2

C
@hð~RÞ
@xm

nmdij � 2l2

C
@xkð~RÞ
@xm
þ @xmð~RÞ

@xk

� �
nm �

C

ijk, and

hð~RÞ ¼ div~R, dij is Kronecker delta, �C

ijk is the per-

mutation symbol.

Surface forces ~Pð~RÞ from the condition (3.2) can be

defined through classical surface forces ~pð~UÞ ¼
frijð~UÞnjg and tangential cohesion moments by the

following formulas:

Pið~RÞ ¼ pið~UÞ þ
@MiðsÞð~RÞ

@s
þ
@MiðsÞð~RÞ

@s

¼ pið~UÞ þ
@Mijð~RÞ
@xp

ðdpj � npnjÞ

¼ pið~UÞ þ
@

@xp

ð2lþ kÞ2

C

@hð~RÞ
@n

dij �
2l2

C

@xkð~RÞ
@xm

"

�ðnm �

C

ijk þ nk �

C

ijmÞ
#

ðdpj � npnjÞ ð3:5Þ
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The Eqs. (3.5) are another form of representations

of the surface forces (2.3), in which the classical part of

surface forces are extracted in explicit form.

On the basis of the Eq. (3.1), (3.2) effective charac-

teristics of a composite materials are calculated taking

into account local effects. Hereinafter three approaches

will be developed: (i) the integral Eshelby formula [8]

will be received for matrix with isolated inclusion; (ii)

the generalized Eshelby solution for isolated inclusion

in matrix will be found and generalized Eshelby matrix

will be established; (iii) the exact asymptotic average

solution will be obtain on the base of the procedure of

asymptotic homogenization [3] for composite materials

with periodic structure in framework of the gradient

model of interphase layer. For the solution of auxiliary

problems arising here and for numerical simulation of

the stress-state in framework of the model of interphase

layer the block analytical-numerical method [37, 38, 39]

is used. This method allows to calculate effectively

auxiliary characteristics (components of stress tensor,

energy in a cell, etc).

Integral Eshelby’s formula

To receive the integral Eshelby formula we will use the

Eshelby procedure [8]. It may be proved, that for a

problem (4.1), (4.2) has place the following integral rela-

tionship between integral in the volume G and integral on

the surface ¶G for two arbitrary fields of displacements~R

and ~R0 by analogue with the Green’s formula:

1

C

Z

@G

L LCð~RÞ~R0dV ¼
Z

@G

~Pð~RÞ~R0dV 0

þ
Z

@G

~MðnÞð~RÞ
@~R0

@n
dV 0 � 2Eð~R; ~R0Þ; ð4:1Þ

Eð~R;~R0Þ¼
Z

G

"

2leijð~RÞeijð~R0Þþkhð~RÞhð~R0Þ:

þ8
l2

C
nijð~RÞnijð~R0Þþ

ð2lþkÞ2

C
hið~RÞhið~R0Þ

#

dV;

where hi ¼ h; i ¼ @h=@xieij ¼ 1=2ðRi;jþRj;i Þ, nij ¼ 1=2

ðxi;jþxj;i Þ.
The rule of Einstein about summation on repeating

indexes is used. The integral relationship (4.1) is car-

ried out also in area with inclusion because on

boundary of inclusion-matrix the conjugation condi-

tions (3.2) are satisfied. From this representation the

generalized integral formula of Eshelby [10] is

received. This formula is used for an estimation of the

strain energy in considered body with inclusion for the

gradient interphase model.

Let consider the homogeneous (~F ¼ 0) problem

(3.1), (3.2) in domain G. The boundary ¶G is loaded by

distributed surface forces ~Pð~RÞ ¼ ~P0, and by the

moments ~MðnÞð~RÞ ¼ ~M0ðnÞ. Assume that displacement
~R is the solution of such boundary problem. Let’s

introduce parallel with ~R also the field of displace-

ments ~R0 in domain G for the same boundary problem

without inclusion. Then the integral (4.1) for energy

EðGÞ ¼ Eð~R; ~RÞ can be write in the following form:

EðGÞ ¼ E0ðGÞ �
1

2
E0ðGÞ;

E0ðGÞ ¼
Z

@G

~Pð~R0Þ~R0 þ ~MðnÞð~R0Þ
@~R0

@n

" #

dV 0;

where dV¢ is the element of surface of the body G,

E0ðGÞ ¼ Eð~R0; ~R0Þ is the energy for the homogeneous

problem without inclusion, E¢(G) is the increment of

energy in the body due to inclusion, which is the energy

of interaction for two stress-strain states corresponding

to two displacements fields ~R0 and ~R0 ¼ ~R� ~R0.

Applying Eq. (4.1) for a combination of fields ~R0

and ~R0ð~R0 ¼ ~R� ~R0Þ in the area outside of inclusion we

can receive:

E0ðGÞ ¼ 2Eð~R0; ~R
0Þ � 2 Eð~R0; ~R0Þ

þ
Z

C

~Pð~R0Þ~R0 �~Pð~R0Þ~R
0 þ ~MðnÞð~R

0Þ @
~R0

@n

"

�~MðnÞð~R0Þ
@~R
0

@n

#

dV 0;

where G is the any surface around inclusion, in par-

ticular, it is the surface of inclusion (the normal vector

on G is directed outside of inclusion).

Then, taking into account symmetry of the bilinear

form Eð~R0; ~R0Þ and using relation ~R
0 ¼ ~R� ~R0 we

receive an integral formulae for an estimation of

energy increment due to change of the homogeneous

cell on the cell with inclusion:

EðGÞ ¼ E0ðGÞ �
1

2
E0ðGÞ; ð4:2Þ

E0ðGÞ ¼
Z

C

~Pð~RÞ~R0 �~Pð~R0Þ~Rþ ~MðnÞð~RÞ
@~R0

@n

"

� ~MðnÞð~R0Þ
@~R

@n

#

dV 0: ð4:3Þ
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The cell with inclusion has the same as homogeneous

cell loading conditions. Equations (4.2) (4.3) generalize

corresponding integral Eshelby’s formula [8] on the

gradient model of the interphase layer. In particular, if

the field of displacements ~R0 corresponds to homoge-

neous deformations in which there is no cohesion

component ~u0, the integral for an estimation of energy

becomes simpler because ~R0 ¼ ~U0:

E0ðGÞ ¼
Z

C

~Pð~RÞ~U0 þ ~MðnÞð~RÞ
@~U0

@n
�~pð~U0Þ~R

" #

dV 0:

ð4:4Þ

It is proposed that the field of displacements, stres-

ses (surface forces) and cohesion moments in Eqs.

(4.2)–(4.4) can be calculated numerically using for

example the special analytical-numerical method,

which is developed in the present work. Then the Eqs.

(4.2), (4.3) allow to find the approximate estimation of

the effective moduli of matrix reinforced by inclusions

and take into account local interphase layer. Indeed

let’s consider for example the homogeneous loading of

materials under tension. We can find the following

approximated equation for effective Young modulus:

2lþ kÞjeff ¼ E0=ðE0 � E0=2Þ, where E0 and E¢ are

defined by Eqs. (4.2), (4.3) and can be calculated

numerically.

Generalized Eshelby’s solution: Eshelby’s matrix

Let’s remind that Eshelby considered the deformation

problem of isolated inclusion with matrix under

homogeneous loading on the infinity in framework of

the classical theory of elasticity. In case of single

inclusion subjected to the action of a uniform field, the

strains within the inclusion, ekl
incl, relate to the remote

strain, ekl
0 , as follows [10, 11, 25]

Dkijkle
incl
kl þ k0

ijkle
�
kl ¼ 0; eincl

kl ¼ e0
kl þ eadd

kl ;

here k0 is tensor of moduli of elasticity for the matrix

without inclusion, and Dk is matrix of jumps of moduli

of the elasticity between inclusion and matrix. Strains

ekl
add are the additional, or ‘‘restrained’’ strains within

the inclusion, ekl
* are the equivalent free strains. They

are correlated by means of Eshelby’s tensor Ŝpqrs as

follows:

eadd
pq ðPÞ ¼ ŜpqrsðPÞe�rs;

where P = (x1, x2, x3) is some point in the considered

body, Ŝijpq is so-called Eshelby’s matrix.

The Eshelby matrix plays a fundamental role in

mechanics of composites because gives the effective

instrument for definition of effective averaging

mechanical properties of composite materials [24, 25].

So, in compliance with the fundamental Eshelby’s

method in case of dilute concentration of the inclusions

we can find the effective mechanical properties of

composite keff (the matrix with inclusion) using the

Eshelby’s matrix Ŝijpq:

keff¼k0þk0KX K¼ k0þDkŜ
� ��1

Dk¼ Dk�1k0þ Ŝ
� ��1

or

keff¼k0þTDkX T¼k0 k0þDkŜ
� ��1

¼ IþDkŜk0�1
� ��1

The expressions for the components of Eshelby’s

tensor in case of isotropic matrix are known [10, 11,

25].

In our work we received the generalization of the

Eshelby’s solution in framework of the nonclassical

gradient model of materials for matrtix and inclusion

which allow to take into account the local scale effects

concentrated near bounds of matrix/inclusions. It was

established that the generalized matrix has the fol-

lowing form:

~SijpqðPÞ ¼ ŜijpqðPÞ � SijpqðPÞ; ð5:1Þ

where ŜijpqðPÞ is the classical Eshelby’s matrix and

Sijpq (P) is an additional term due to cohesion field.

This generalization is based on the representation of

fundamental solution of spatial problem (3.1), (3.2) in

the form of difference of two fundamental solutions of

classical and non-classical problems of elasticity:

~RjðP;P0Þ ¼ fRijg ¼ ~UjðP;P0Þ �~ujðP;P0Þ; ð5:2Þ

~UjðP;P0Þ ¼ fUijg; UijðP;P0Þ ¼
1

4pl

dij

P�P0j j�
1

16plð1� mÞ
@2

@xi@xj
P�P0j jð Þ;

ð5:3Þ

~ujðP;P0Þ ¼fuijg; uijðP;P0Þ ¼
1

4pl
dije
�j2 P�P0j j

P� P0j j

� 1

4pC

@2

@xi@xj

e�j1 P�P0j j � e�j2 P�P0j j

P� P0j j

 !

; ð5:4Þ
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where j1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=2lþ k

p
, j2 ¼

ffiffiffiffiffiffiffiffiffi
C=l

p
, P = (x1, x2, x3)

and P¢ = (x¢1, x¢2, x¢3) two points in the space, ~RjðP;P0Þ
is the vector of displacements, caused by the point force

applied in point P¢ in xj-direction (i.e. it is the gener-

alization of the fundamental solution of a classical

problem in elasticity theory, i.e. it is Somilliana tensor).

The Eq. (5.2) follows from structure of operator

(3.1). Generalized Somilliana tensor (5.4) tends to

classical tensor (5.3) when C fi 0. The isolated

inclusion in infinity matrix (see Fig. 1) with common

jump condition (3.2) and with requirement ~R! ~U0,

P fi ¥ was considered. Here ~u0 is the displacement

corresponding to uniform stress-strain state with con-

stant stress deformation epq
(0).

We have been constructed solution of this problem

on the base of (5.2)–(5.4) in the form of a simple layer

potential with known density:

~RðPÞ ¼ ~U0ðPÞ þ ~RcðPÞ; ~Rc ¼ Rc
i

� �
;

Rc
i ðPÞ ¼

Z

@G

rð0Þjk

h i
nkRijðP;P0ÞdP0; ð5:5Þ

where [rjk
(0)] are jumps of stress tensor on inclusion,

[rik
(0) ]=[k]eii

(0) dik +2[l]eik
(0), ~RcðPÞ is the restricted dis-

placements; in Eq. (5.5) integration carry out on the

surface of inclusion ¶G, and G is area of inclusion; P is

any point of volume (the point of matrix or inclusion);

P¢ is varying point on the surface of inclusion.

In accordance with (5.2) displacements ~RcðPÞcan be

submitted as decomposition on the classical and

cohesion components. It can be check up in compliance

with properties of (5.5) that the restricted displace-

ments ~RcðPÞ and their normal derivatives are contin-

uous, and also the cohesion moments ~MðnÞð~RcÞ are

continuous if mf = mm and l0
f = l0

m. Thus, first three

conditions (3.2) are executed for considered case. It

can be found that last condition just gives necessary

jump ~pð~UcÞ
h i

¼ � rð0Þik

h i
nk for surface forces of the

constructed solution. After transformation formula

(5.5) with the help of Ostrogradsky–Gauss theorem

and after calculation restricted stress deformation eij
c

(P) we obtain generalized Eshelby matrix ~SijpqðPÞ in

the form (5.1) with the following components:

ŜijpqðPÞ ¼ T̂ijklðPÞCklpq;

T̂ijklðPÞ ¼ �
dliû;kjðPÞ þ dljû;kiðPÞ

8pl
þ

ŵ;ijklðPÞ
16plð1� mÞ ; ð5:6Þ

ûðPÞ ¼
Z

G

dP0

P� P0j j; ŵðPÞ ¼
Z

G

P� P0j jdP0; ð5:7Þ

SijpqðPÞ ¼ TijklðPÞCklpq;

TijklðPÞ ¼ �
dliu;kjðPÞ þ dlju;kiðPÞ

8pl
þ

w;ijklðPÞ
4pC

; ð5:8Þ

uðPÞ ¼ varphiðP; j2Þ ¼
Z

G

e�j2 P�P0j j

P� P0j j dP0;

wðPÞ ¼ uðP; j2Þ � uðP; j1Þ: ð5:9Þ

The matrix (5.6), corresponds to the classical solution

and coincides with the matrix received by Eshelby in

the work [10]. The new matrix Sijkq (5.8) corresponds

to the cohesion field. This matrix is the correction term

to the Eshelby solution in the framework of considered

model of cohesion type interphase layer.

Explicit analytical formulas (5.6)–(5.7) define

behavior of the constructed solution in the matrix and

in the inclusion. Using Eqs (5.6), (5.7) Eshelby has

been investigated in detail the behavior of the classical

part of the solution U, which has in particular asymp-

totic on infinity as A/r2. He has shown also, that the

solution ~UcðPÞ gives the homogeneous field of defor-

mation inside inclusion of ellipsoid form.

The generalized solution (5.5) has another behavior

inside inclusion. Homogeneous of deformation field

inside inclusion is broken due to cohesion part of the

solution (5.5). On the infinity solution saves the clas-

sical asymptotic A/r2, because the cohesion part is

exponentially tends to zero when P fi ¥. Formulas

(5.6)–(5.9) can be used for homogenization of com-

posite materials within the framework of spatial model

of moment cohesion.

Asymptotic homogenization for gradient model

In according with a technique of asymptotic homoge-

nization of processes in periodic media [3], we consider

the Eq. (3.1), (3.2) in the infinite media with periodic

microinclusions (for example, of the spheroidal form,

Figs. 2, 3). We introduce together with slow variables

x=(x1, x2, x3) so-called fast variables f =e)1x, where e is

the characteristic size of microinclusions (see Fig. 4),

and we rewrite system of the Eqs. (3.1) in the matrix

form, assuming that interphase layer lays into the cell:Fig. 1 Inclusion as spheroid in infinity matrix
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� 1

C
LLCðf;~RÞ þ ~FðxÞ ¼ 0;

LCðf;~RÞ � @

@xk
AkjðfÞ

@~R

@xj

 !

� e�2CðfÞ~R ¼ 0; ð6:1Þ

where Akj (f) is the matrix of Lame coefficients Akjpq

(f) = l (f)(dkq djp + dkj dpq ) + k (f)dkp djq, accepting

constant value {lf, kf} in inclusion, and constant value

{lm, km } in the matrix of the composite material,

C(f)=l (f)/l0
2 (f) is the cohesion field parameter, also

accepting piecewise constant value, l0
2 (f) is the width

of an interphase layer in the matrix and in inclusion.

Then we can construct the formal asymptotic

decomposition of the solution (6.1) as a series on

degrees of geometrical parameter e, being the period of

microinclusions translating:

~Rðx; fÞ ¼
X

l�0

X

i¼ði1...ilÞ
elNiðfÞDi~VðxÞ; ð6:2Þ

where ~VðxÞ is the slow function (i.e. solution of the

homogenized operator), Ni (f) is the fast matrix func-

tions being recurrent solution of a chain of problems

on a cell of periodicity, i is the multi-index [3], Di~VðxÞ
is the every possible derivatives of the order l on slow

variables.

In decomposition (6.2) slow and fast variables are

divided, matrix functions Ni (f) describe local behavior

of the solution in the cell of periodicity, the vector

function ~VðxÞ describes global behavior of the solution

and corresponds to the homogenized media with

effective characteristics (i.e. it is satisfied the equation

with constant coefficients). The equations for Ni (f)

and the homogenized equation for ~VðxÞ is received by

standard technique after substitution (6.2) in (6.1),

applying a formula of differentiation of the complex

function dependent on slow and fast variables,

Dxf ðx; fÞ ¼ @f
@xþ e�1 @f

@f, and reducing of members with

identical degrees el in transformed formal asymptotic

decomposition to zero. The most important are two

first members in decomposition (6.2), because they

describe a stress-strain state in the composite with

account of microstructure and contain effective char-

acteristics of homogenized media:

~Rðx; fÞ 	 ~VðxÞ þ e
X

l

NlðfÞ
@~VðxÞ
@xl

;

X

kj

Âkj
@2~VðxÞ
@xk@xj

þ~FðxÞ ¼ 0: ð6:3Þ

here indexes l,k,j take on a values from 1 to 3.

The matrix coefficients Âkj correspond to the

homogenized elastic media (generally anisotropic) and

are calculated through periodic matrix functions Nl (f)

under the formula of averaging on a cell of periodicity

G [3]:

Âkj ¼ AkjðfÞ þ
X

l

AklðfÞ
@NjðfÞ
@fl

� 1

C

@HjðfÞ
@fl

� �* +

;

ð6:4Þ

Hj ¼ LðNjÞ; f ðfÞh i ¼ 1

mesðGÞ

Z

G

f ðfÞdf: ð6:5Þ

Matrix functions of fast variables Nj (f) are deter-

mined from the equations on the cell of periodicity

with contact conjugate conditions (3.2) on boundary of

inclusions:

Fig. 2 A periodic cell with inclusion of the spheroidal form

Fig. 3 Distribution of the energy density of in the cell at different value of cohesion parameter
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LLC Nj þ fjE
� �

¼ 0; Nj

� �
¼ @Nj

@n

� �

¼ MðnÞðNjÞ
� �

¼ PðNj þ fjEÞ
� �

¼ 0; ð6:6Þ

where E is the unique matrix, ~n is the vector of an

external normal to a surface of inclusion. The auxiliary

problem (6.6) is reduced to a homogeneous problem of

moment cohesion (3.1) in the cell of periodicity with

inclusion and with conditions of periodic jump along

directions f 1, f2 or f3.

Eqs. (6.3)–(6.6) gives closed generalized solution of

the homogenization problem in framework of the

asymptotical homogenization method [6].

Let’s introduce the vector functions ~Rk j, which are

column vectors of the matrix functions Nj þ fjE ¼
f~Rk jg. then these functions according to (6.6) satisfy to

the homogeneous Eq. (3.1), (3.2) inside the cell of

periodicity G with inclusion. They will consist from two

component ~Rk j ¼ ~Uk j �~uk j, first of which satisfies to

homogeneous Lame equation, and the second to the

equation of cohesion field, and on the boundary of a

parallelepiped G both of them satisfy to conditions of

periodic jump of the following kind:

~Uk jðfþ~eiLiÞ ¼ ~Uk jðfÞ; i 6¼ j;

~Uk jðfþ~ejLjÞ ¼ ~Uk jðfÞ þ~ekLj;

~uk jðfþ~eiLiÞ ¼ ~uk jðfÞ: ð6:7Þ

Because everyone of component ~Uk j and ~Uk j satisfy

separately to the second order equation, then bound-

ary conditions (6.7) together with conditions (3.2) on

border of inclusions uniquely define function ~Uk j, and

function ~Uk j accurate to an any constant. Result, the

boundary problem (6.6) reduced to set of nine con-

nected boundary problems respect to vector functions
~Rk j. This problem can be solved numerically. In pres-

ent work corresponding problem is solved for partic-

ular plane problem with the aid of the special

analytical-numerical method.

Block analytical-numerical method of numerical

modeling for gradient interphase layer

Here the block-analytical method of the boundary

problem is developed for gradient model of an inter-

phase layer. Special form of the solution is proposed

using the auxiliary vector potentials satisfying

Helmholtz or Laplace equations. These potentials are

generalizations of known Neuber–Papkovich’s repre-

sentations [27]. General scheme of the analytical-

numerical method assumes splitting initial domain
�G ¼ [�Bk into system crossed only on the boundary, Bk

\ Bl =˘, k 6¼ l, simply connected sub-domains

called blocks. Specific systems of functions and gen-

eralized Taylor series are used for obtaining of the

solutions in the each of blocks. The appropriate theo-

rems determining an analytical basis of a method are

formulated.

We can uniquely represent any solution of the non-

uniform equation LCð~uÞ ¼ ~F by two coordinated

among themselves vector potentials, satisfying to spa-

tial Helmholtz equation [39]:

r2~f ðPÞ�C

l
~f ðPÞ¼~FðPÞ; r2~f �ðPÞ� C

2lþk
~f �ðPÞ¼~FðPÞ:

ð7:1Þ

We shall name these potentials as coordinated

potentials in some point P0 of the inside area if in this

point any derivatives on variables w = f1 + if2 and

z = f3 coincide:

@n~f ðP0Þ
@wm@zn�m

¼ @n~f �ðP0Þ
@wm@zn�m

;
@

@w
¼1

2

@

@f1

� i
@

@f2

� �

; 0
m
n

ð7:2Þ

The condition (3.2) uniquely determines potential~f �

on the given potential ~f , and the contrary. The fol-

lowing theorem defines the common view of the solu-

tion.

Theorem 1 Any solution of the equation LCð~uÞ ¼ ~F
can be uniquely submitted as

~uðPÞ ¼ 1

l
~f ðPÞ þ 1

C
rdiv ~f �ðPÞ �~f ðPÞ

h i
ð7:3Þ

through two vector potentials ~f and ~f �, satisfying

Helmholtz Eq. (7.1), and coordinated among them-

selves by the condition (7.2).

Direct substitution (7.3) into the equation

LCð~uÞ þ ~F ¼ 0 results in identity after transformation

formula to a form:

Fig. 4 A composite material with periodic microinclusions
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L~u� C~u ¼ r2~f � C

l
~f

� �

� 2lþ k
C
rdiv

r2~f � C

l
~f

� �

� r2~f � � C

2lþ k
~f �

� �� �

:

The theorem 1 asserts, that any solution of the

LCð~uÞ þ ~F ¼ 0 can be submitted in the form (7.3) and

coordinated conditions (7.2) provide uniqueness of

relation (7.3).

It can be proved that for C fi 0, ~F ¼ 0 the right-

hand side of Eq. (7.3) gives the famous Neuber–Pap-

kovich representation for solutions of homogeneous

equation of the classical theory of elasticity:

~UðPÞ ¼ 1

l
~f0ðPÞ �

1

4lð1� mÞr ~r~f0ðPÞ
h i

; ð7:4Þ

where~r ¼ P0P
��!

is the radius-vector in the point P from

the point P0,~f0 is the harmonic vector,~r~f0 is the scalar

product of two vectors.

Thus, the solution of the problem on a cell of peri-

odicity (6.6), (6.7) is reduced to a finding of vector

potentials ~f0ðPÞ and ~f ðPÞ, satisfying Laplace and

Helmholtz equations. The additional potential ~f �ðPÞ
uniquely determines by conditions (7.2). These repre-

sentations are used in the block analytical-numerical

method applied for the solution of spatial problems of

moment cohesion on the cell of periodicity.

Let’s discuss briefly the construction of solution in

each of blocks. Inside blocks the solution of the

homogeneous Eq. (7.1) is represented as series on

system of special functions Fn
m [38], similar to the

polynomials having singularity in infinity point and

identically satisfying the homogeneous Eq. (7.1):

UðPÞ ¼
X1

n¼0

Xn

m¼0

"

anm Um
n ðP� P0Þ þ bnm

�Um
n ðP� P0Þ

#

ð7:5Þ

Um
n ðPÞ ¼ Um

n ðP; jÞ ¼
X
n�m

2½ �

p¼0

ImþpðjrÞ
p!

r

2j

� �p

ei m u

� d2p

dz2p
Amzn�mð Þ; Am ¼ ð2=jÞmm!; ð7:6Þ

where Im (t) is the modified Bessel function of first kind

[4], rei/ =f1 + if2, j2 is the coefficient of the Helmholtz

equation.

The representation (7.5) is analogue of Taylor series

for solution of the Eq. (7.1), and its coefficients can be

calculated with the help of differentiation on variables

z and w. It is uneasy to be convinced in validity of

differential recurrent relationships:

@Um
n

@z
¼ ðn�mÞUm

n�1;
@Um

n

@w
¼ mUm�1

n�1 ; m 6¼ 0;

@Um
n

@ �w
¼ �

ðn�mÞðn�m� 1ÞUmþ1
n�1 � j2Umþ1

nþ1

4ðmþ 1Þ :

These relationships allow to differentiate analytically

local representations (7.1) and to construct generalized

Taylor series for solution of the Eq. (7.1). The fol-

lowing theorem determines the properties of the gen-

eralized Taylor series (7.6).

Theorem 2 (generalized Taylor series) Any solution
of the Eq. (7.1) can be written in some vicinity of a
point P0 2G as converging series (7.5), (7.6), and
coefficients anm and bn m are calculated with the help of
differentiation of the solution F in a point P0

anm ¼
1

m!ðn�mÞ!
@nUðPÞ

@wm@zn�m
;

bnm ¼
1

m!ðn�mÞ!
@nUðPÞ

@ �wm@zn�m
; bn0 ¼ 0:

Theorems 1 and 2 are the theoretical basis of the block

analytical-numerical method in application to the

solution of the problem (6.6), (6.7).

The harmonic potential ~f
ðkÞ
0 is introduced for the

classical component of field of displacements ~Uk, and

pair of local potentials~f �ðkÞ and~f ðkÞ are introduced for

description of the field of displacements~uk in the block

Bk. Potentials~f �ðkÞ and~f ðkÞ are approximated by series

(7.5) on system of special functions (7.6) with the same

coefficients:

~f ðkÞðPÞ ¼ Re
XMk

n¼0

Xn

m¼0

~AðkÞnmUm
n ðP� P

ðkÞ
0 ; j1Þ;

~f �ðkÞðPÞ ¼ Re
XMk

n¼0

Xn

m¼0

~AðkÞnmUm
n ðP� P

ðkÞ
0 ; j2Þ; ð7:7Þ

where P0
(k)is the some point inside the block Bk, and j1

and j2 are the corresponding parameters of the Eq.

(6.1): j1 ¼
ffiffiffiffiffiffiffiffiffi
C=l

p
, j2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ð2 lþ kÞ

p
.

Coordinated condition for potentials (7.2) are fulfilled

automatically on the basis of the theorem 2, because

series (7.7) have the same coefficients ~A
ðkÞ
nm, which are

calculated with the help of differentiation on variables w

and z in the point P0
(k). The harmonic potential ~f

ðkÞ
0

approximated by series (7.5), (7.6) at j = 0, i.e. by series

on system of the normalized spherical functions.
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Conjugation of local representations in blocks with

conditions (3.2) is carried out by means of set of

functionals of the least squares method simultaneously

sewing function and normal derivative on the bound-

ary between blocks. For the blocks adjoining to surface

of inclusion from the matrix and from the inclusion,

these functionals according to (5.6) have the following

view:

�
�
�
�

�
�
�
�
~Rk�~Rj

�
�
�
�

�
�
�
�

2

L2ðSkjÞ
þ
�
�
�
�
�

�
�
�
�
�
@~Rk

@n
�@

~Rj

@n

�
�
�
�
�

�
�
�
�
�

2

L2ðSkjÞ

þ
X

l

�
�
�
�
�

�
�
�
�
�
@~Uk

@n
�@

~Ul

@n

�
�
�
�
�

�
�
�
�
�

2

L2ðSklÞ

þ
X

l

�
�
�
�
�

�
�
�
�
�
@~uk

@n
�@~ul

@n

�
�
�
�
�

�
�
�
�
�

2

L2ðSklÞ

¼min;

�
�
�
�

�
�
�
�
~Pð~RkÞ�~Pð~RjÞ

�
�
�
�

�
�
�
�

2

L2ðSkjÞ
þ
�
�
�
�

�
�
�
�
~MðnÞð~RkÞ� ~MðnÞð~RjÞ

�
�
�
�

�
�
�
�

2

L2ðSkjÞ

þ
X

l

�
�
�
�

�
�
�
�
~Uk�~Ul

�
�
�
�

�
�
�
�

2

L2ðSklÞ
þ
X

l

�
�
�
�

�
�
�
�~uk�~ul

�
�
�
�

�
�
�
�

2

L2ðSklÞ
¼min;

here Skj is the part of the surface of inclusion, delim-

iting blocks Bk and Bj, adjoining to boundary of

inclusion, Skl is the common part of boundary of blocks

Bk and Bl, laying strictly inside inclusion or in a matrix.

For blocks Bk and Bl, not having the common bound-

ary with the inclusion, components with norm�
�
�
�

�
�
�
����
�
�
�
�

�
�
�
�

2

L2ðSkjÞ
are absent. For the blocks adjoining to

border of the parallelepiped, these functionals

according to conditions (5.7) have the following view:

�
�
�
�

�
�
�
�
~Uþk �~U�j �L~ei

�
�
�
�

�
�
�
�

2

L2ðSkÞ
þ
�
�
�
�

�
�
�
�~u
þ
k �~u�j

�
�
�
�

�
�
�
�

2

L2ðSklÞ

þ
X

l

�
�
�
�
�

�
�
�
�
�
@~Uk

@n
�@

~Ul

@n

�
�
�
�
�

�
�
�
�
�

2

L2ðSklÞ

þ
X

l

�
�
�
�
�

�
�
�
�
�
@~uk

@n
�@~ul

@n

�
�
�
�
�

�
�
�
�
�

2

L2ðSklÞ

¼min;

�
�
�
�
�

�
�
�
�
�

@~Uþj
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�@

~U�k
@n

�
�
�
�
�

�
�
�
�
�

2

L2ðSjÞ

þ
�
�
�
�
�

�
�
�
�
�

@~uþj
@n
�@~u

�
k

@n

�
�
�
�
�

�
�
�
�
�

2

L2ðSjÞ

þ
X

l

�
�
�
�

�
�
�
�
~Uk�~Ul

�
�
�
�

�
�
�
�

2

L2ðSklÞ
þ
X

l

�
�
�
�

�
�
�
�~uk�~ul

�
�
�
�

�
�
�
�

2

L2ðSklÞ
¼min;

here Sk and Sj are boundaries of blocks Bk and Bj,

adjoining to the parallel sides of the cell of periodicity

and connected among themselves by a condition of

parallel transition along the corresponding coordinate

axis; ~uþk , ~uþk and ~u�k , ~u�j are corresponding values of

local functions on boundaries Sk and Sj. It is supposed,

that block structure of the cell is arranged in such

manner, that the parallel sides of the cell are divided by

adjoining blocks so, that to each boundary Sk there will

be a parallel boundary Sj.

The condition of minimization of the set of func-

tionals above gives the block system of linear equations

for calculation of unknown coefficients in decomposi-

tion (7.5).

The developed analytical-numerical method is used

for solving of the homogenization problem (6.4)–(6.6).

This method can be used also for estimation of the

effective mechanical properties on the base of the

integral Eshelby’s formulus (4.2)–(4.4).

Numerical results

Comparative calculations on a rectangular cell with the

sizes L· H are presented for the problem (3.1), (3.2)

below, using the block analytical-numerical method.

The problem of the unidirectional tension along the

longitudinal axis for the cell with inclusion 0x1 was

considered. In Figs. 3, 5, 6 numerical results are given

for the cell with inclusion of the round form with the

radius 0.4 located in the center of a rectangular matrix

with the sizes L = 2 and H = 1.2. Values of Poisson

coefficients and shear modules in a matrix and inclu-

sion are mm = mf = 0.3, lf /lm = 2. Influence of the

width of interphase layer l0 on distribution of stresses

and density of energy in the matrix and inclusion is

investigated. Distributions of density of energy

and normal stresses r11 in the cell with circular

inclusion at different value of cohesion parameter

(l0 = 0.1, 0.032, 0) are shown in Figs. 3 and 5. Com-

parison of the stress-strain state in the cell for the

gradient model of the interphase layer and for the

classical problem, (l0 fi 0) is given.

We can see the effect of the redistribution of the

energy between the matrix and inclusion in Fig. 3. For

the classical problem the energy is basically concen-

trated in the matrix. Gradient model gives the con-

centration effect of the energy in the rigid inclusion.

It is shown, that at certain geometrical and mechan-

ical parameters additional loading of a rigid phase takes

place. Thus the phase with smaller rigidity unloads

(Fig. 5). As a whole it results in redistribution of stress

state in components of a composite. Redistribution of

deformation energy together with significant contact

zones in nano-composites also allow to explain the ef-

fect of increasing of effective modulus for the compos-

ites reinforced by rigid micro- and nano-inclusions.

Effect of energy redistribution gives a basis for quali-

tative explanation of the increasing effect of the ulti-

mate strain in materials (including metal alloys), if they

are modified by introduction of rigid nanoinclusions.
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Distribution of the dilatation function hð~RÞ is pre-

sented in Fig. 6 at the same values of the cohesion

parameter. Effect of changing of the width of the

interphase layer and also effect of smoothing of the

solution near to the boundary of inclusion from

parameter of the gradient model l0 are observed in

Fig. 6.

By the block analytical-numerical method have been

calculated effective characteristics (6.4), (6.5) (with

taking into account of not local effects) for a composite

material with factor of volume fraction g = p/16 and

with periodically repeating circular inclusions. The

problem (6.6), (6.7) on unit square with circular

inclusion of radius 0.25 was considered. This case cor-

responds to composite materials with factor of volume

fraction g = p/16. Parameters of the matrix and inclu-

sion are varied within the range: 0.1 < lf /lm < 15,

mf = mm = 0.3. The width of interphase layer was con-

stant and equal lm = 0.06 in the matrix, lf = 0.01 in the

inclusion. The matrix of effective coefficients Âkj in this

case corresponds to the orthotropic material with three

homogenized elastic modulus. Comparative calcula-

tions of the effective modulus Â1111 ¼ Ê and shear

modulus Â1122 ¼ l̂, and corresponding coefficients Ê0

and l̂0 for the classical problem (without cohesion

field) have been fulfilled. On Fig. 7 results of calcula-

tions are submitted. Results of homogenization

at lf < lm practically coincide with the classical case.

Sufficient growth of homogenized Young modulus Ê

(up to 	 20% at lf /lm = 15) is observed when lf > lm.

At the same time we have the small growth of

homogenized shear modulus l̂ (on 9% at lf /lm = 15).

So, e have effect of increasing of rigidity of the

composite material for rigid inclusions lf /lm=15) due

to the interphase layer. The shear effective modulus is

changed slightly. More significant reinforcement effect

Fig. 5 Distribution of the normal stresses r11

Fig. 6 Distribution of the dilatation function

Fig. 7 Homogenized elastic modulus
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can be achieved due to greater sizes of the interphase

layers (l0) and elongated form of spheroidal inclusions

(geometrical factor).

Conclusions

Formal theoretical strain gradient model of the inter-

phase layer with local cohesion and interfacial prop-

erties was proposed. Generalized Eshelby’s solution

and asymptotical averaging technique of homogeniza-

tion were extended on the higher-order model. The

effective the block-analytical method of the boundary

problem was developed for gradient model of an

interphase layer. Using these approaches the predic-

tion methodology and modeling tools have been

developed by numerical simulations and analysis of the

stress-strain-stress and mechanical properties across

the length scales.
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